论文标题
由于分类地图的焦点,正量标曲率
Positive Scalar Curvature due to the Cokernel of the Classifying Map
论文作者
论文摘要
本文有助于将积极标态曲率指标分类为Bordism和和一致性。让$ m $成为尺寸$ \ ge 5 $的封闭旋转歧管,它承认具有正标曲率的度量。如果合理的分析性novikov认为是$π_1(m)$,那么我们就$ m $ to Bordism的PSC指标等级提供了较低的界限。
This paper contributes to the classification of positive scalar curvature metrics up to bordism and up to concordance. Let $M$ be a closed spin manifold of dimension $\ge 5$ which admits a metric with positive scalar curvature. We give lower bounds on the rank of the group of psc metrics over $M$ up to bordism in terms of the corank of the canonical map $KO_*(M)\to KO_*(Bπ_1(M))$, provided the rational analytic Novikov conjecture is true for $π_1(M)$.