论文标题

TFNET:用于CTR预测的多语义特征交互

TFNet: Multi-Semantic Feature Interaction for CTR Prediction

论文作者

Wu, Shu, Yu, Feng, Yu, Xueli, Liu, Qiang, Wang, Liang, Tan, Tieniu, Shao, Jie, Huang, Fan

论文摘要

CTR(点击率)预测在计算广告和推荐系统的领域中起着核心作用。在该领域提出了几种方法,例如逻辑回归(LR),分解机(FM)以及基于深度学习的方法,例如宽和深,神经分解机(NFM)和DEEPFM。但是,这种方法通常使用每对特征的矢量产物,这些特征忽略了特征交互的不同语义空间。在本文中,我们提出了一个基于张量的新型特征交互网络(TFNET)模型,该模型通过多个语义空间中的多板矩阵介绍了一种操作张量,以详细的特征交互。广泛的离线和在线实验表明,TFNET:1)优于竞争性比较典型的Criteo和Avazu数据集的方法; 2)在最大的中国应用推荐系统Tencent Myapp中,在线A/B测试中,收入和点击率很大。

The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (FM) and deep learning based methods like Wide&Deep, Neural Factorization Machines (NFM) and DeepFM. However, such approaches generally use the vector-product of each pair of features, which have ignored the different semantic spaces of the feature interactions. In this paper, we propose a novel Tensor-based Feature interaction Network (TFNet) model, which introduces an operating tensor to elaborate feature interactions via multi-slice matrices in multiple semantic spaces. Extensive offline and online experiments show that TFNet: 1) outperforms the competitive compared methods on the typical Criteo and Avazu datasets; 2) achieves large improvement of revenue and click rate in online A/B tests in the largest Chinese App recommender system, Tencent MyApp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源