论文标题

MIMC-VINS:一种多功能且有弹性的多IMU多摄像机视觉惯性导航系统

MIMC-VINS: A Versatile and Resilient Multi-IMU Multi-Camera Visual-Inertial Navigation System

论文作者

Eckenhoff, Kevin, Geneva, Patrick, Huang, Guoquan

论文摘要

随着相机和惯性传感器在移动设备和机器人中变得无处不在,它具有设计视觉惯性导航系统(VIN)的巨大潜力,用于有效的多功能3D运动跟踪,该运动跟踪使用任何(多个可用的摄像机和惯性测量单元(IMU)(IMU),并且对传感器故障失败的措施消耗术或测量耗尽。为此,我们不是使用单个相机和IMU的最小传感套件的标准VIN范式,在本文中,我们设计了一个实时一致的多IMU多相机(MIMC)-VINS-VINS估计器,该估计器能够从任意数量的未触及的摄像机和IMU中无缝地融合多模式信息。在有效的多状态约束Kalman滤波器(MSCKF)框架中,提出的MIMC-VINS算法最佳地从所有传感器中最佳融合了异步测量,同时即使某些传感器失败,也可以提供平滑,不间断和准确的3D运动跟踪。提出的MIMC-VIN的关键思想是执行高阶内式插值,以有效地处理所有可用的视觉测量,而不会增加计算负担,这是由于估计了异步成像时间的其他传感器的姿势。为了融合来自多个IMU的信息,我们传播了一个由所有IMU状态组成的关节系统,同时在滤波器更新阶段在IMU之间实施刚体的约束。最后,我们在线估计时空外部和视觉固有参数,以使我们的系统在先前的传感器校准中对错误进行鲁棒性。在蒙特 - 卡洛模拟和现实世界实验中,该系统得到了广泛的验证。

As cameras and inertial sensors are becoming ubiquitous in mobile devices and robots, it holds great potential to design visual-inertial navigation systems (VINS) for efficient versatile 3D motion tracking which utilize any (multiple) available cameras and inertial measurement units (IMUs) and are resilient to sensor failures or measurement depletion. To this end, rather than the standard VINS paradigm using a minimal sensing suite of a single camera and IMU, in this paper we design a real-time consistent multi-IMU multi-camera (MIMC)-VINS estimator that is able to seamlessly fuse multi-modal information from an arbitrary number of uncalibrated cameras and IMUs. Within an efficient multi-state constraint Kalman filter (MSCKF) framework, the proposed MIMC-VINS algorithm optimally fuses asynchronous measurements from all sensors, while providing smooth, uninterrupted, and accurate 3D motion tracking even if some sensors fail. The key idea of the proposed MIMC-VINS is to perform high-order on-manifold state interpolation to efficiently process all available visual measurements without increasing the computational burden due to estimating additional sensors' poses at asynchronous imaging times. In order to fuse the information from multiple IMUs, we propagate a joint system consisting of all IMU states while enforcing rigid-body constraints between the IMUs during the filter update stage. Lastly, we estimate online both spatiotemporal extrinsic and visual intrinsic parameters to make our system robust to errors in prior sensor calibration. The proposed system is extensively validated in both Monte-Carlo simulations and real-world experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源