论文标题
最大程度地减少使用移动机器人系统形成模式的最大距离
Minimizing The Maximum Distance Traveled To Form Patterns With Systems of Mobile Robots
论文作者
论文摘要
在模式形成问题中,系统中的机器人必须自相协调才能形成给定的模式,而不论翻译,旋转,均匀缩放和/或反射。换句话说,系统的有效最终配置是与所需模式的\ textit {类似}的编辑。尽管在各种假设,模型和环境下,在模式形成问题上的研究不乏研究,但我们考虑了系统中所有机器人之间最大距离的最大距离是最小的。现有的模式形成和密切相关问题的工作通常是针对应用特定的,或者不关心最佳性(而不是可行性)。我们显示了必要的条件,任何最佳解决方案都必须满足并为三个机器人系统提供解决方案。我们的工作还导致了一个有趣的结果,该结果具有超出模式形成的应用程序。也就是说,一个用于比较两个三角形的度量,其中$ 0 $表示三角形相似,$ 1 $表示它们是\ emph {完全不同的}。
In the pattern formation problem, robots in a system must self-coordinate to form a given pattern, regardless of translation, rotation, uniform-scaling, and/or reflection. In other words, a valid final configuration of the system is a formation that is \textit{similar} to the desired pattern. While there has been no shortage of research in the pattern formation problem under a variety of assumptions, models, and contexts, we consider the additional constraint that the maximum distance traveled among all robots in the system is minimum. Existing work in pattern formation and closely related problems are typically application-specific or not concerned with optimality (but rather feasibility). We show the necessary conditions any optimal solution must satisfy and present a solution for systems of three robots. Our work also led to an interesting result that has applications beyond pattern formation. Namely, a metric for comparing two triangles where a distance of $0$ indicates the triangles are similar, and $1$ indicates they are \emph{fully dissimilar}.