论文标题

通过空间平均重新审视的惯性歧管

Inertial manifolds via spatial averaging revisited

论文作者

Kostianko, Anna, Li, Xinhua, Sun, Chunyou, Zelik, Sergey

论文摘要

本文对半连接抛物线方程的惯性流形进行了全面研究,并使用G. Sell和 J. Mallet-Paret。我们提出了一种通用方法,该方法涵盖了通过此方法获得的已知结果的大部分,并提供了许多新的结果。我们的应用中包括反应扩散方程,各种类型的广义Cahn-Hilliard方程,包括分数和第六阶Cahn-Hilliard方程以及几类改良的Navier-Stokes方程,包括Leray-$ leray-$α$正则化,过度鉴定的正则化及其组合。所有结果均在3D情况下获得周期性边界条件。

The paper gives a comprehensive study of inertial manifolds for semilinear parabolic equations and their smoothness using the spatial averaging method suggested by G. Sell and J. Mallet-Paret. We present a universal approach which covers the most part of known results obtained via this method as well as gives a number of new ones. Among our applications are reaction-diffusion equations, various types of generalized Cahn-Hilliard equations, including fractional and 6th order Cahn-Hilliard equations and several classes of modified Navier-Stokes equations including the Leray-$α$ regularization, hyperviscous regularization and their combinations. All of the results are obtained in 3D case with periodic boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源