论文标题
有效的无模型空间预测
Valid model-free spatial prediction
论文作者
论文摘要
在未观察到的位置预测响应是空间统计中的一个基本问题。鉴于难以建模空间依赖性,尤其是在非平稳情况下,基于模型的预测间隔有可能会对其有效性产生负面影响的偏差。在这里,我们提出了一种基于保形预测机制的新方法,用于无模型的非参数空间预测。我们的主要观察结果是,可以在广泛的设置中准确或大致可交换空间数据。特别是,在填充渐近方案下,我们证明响应值在某种意义上是在局部近似近似近似的空间过程,并且我们开发了局部空间的共形性预测算法,该预测算法产生有效的预测间隔,而没有强大的模型假设,则可以产生有效的预测间隔。具有真实数据和模拟数据的数值示例证实,与现有的基于模型的数据集相比,在一系列非平稳和非高斯设置的大型数据集中,所提出的共形预测间隔是有效的,并且通常更有效。
Predicting the response at an unobserved location is a fundamental problem in spatial statistics. Given the difficulty in modeling spatial dependence, especially in non-stationary cases, model-based prediction intervals are at risk of misspecification bias that can negatively affect their validity. Here we present a new approach for model-free nonparametric spatial prediction based on the conformal prediction machinery. Our key observation is that spatial data can be treated as exactly or approximately exchangeable in a wide range of settings. In particular, under an infill asymptotic regime, we prove that the response values are, in a certain sense, locally approximately exchangeable for a broad class of spatial processes, and we develop a local spatial conformal prediction algorithm that yields valid prediction intervals without strong model assumptions like stationarity. Numerical examples with both real and simulated data confirm that the proposed conformal prediction intervals are valid and generally more efficient than existing model-based procedures for large datasets across a range of non-stationary and non-Gaussian settings.