论文标题
通过不可压缩的Euler方程,一种动态的 - 流体障碍物,用于riemannian歧管的平滑等轴测嵌入
A dynamical--topological obstruction for smooth isometric embeddings of Riemannian manifolds via incompressible Euler equations
论文作者
论文摘要
我们获得了一种动力学的 - 对静脉内嵌入的构图障碍,其中包括$ m $的第一个真正的同源性是不乏味的,如果基本组的中心是微不足道的,那么如果$ m $的第一个真正的同源性是微不足道的,那么如果$ m $是exementy obrate insmenty insmenty insementy insemention ty $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3动力学的,动力学相关的条件(定义1.1中的“刚性同位素扩展特性”)。这些参数是由不可压缩的Euler方程激励的,这些方程在流体动力学中具有规定的初始和终端配置。
We obtain a dynamical--topological obstruction for the existence of isometric embedding of a Riemannian manifold-with-boundary $(M,g)$: if the first real homology of $M$ is nontrivial, if the centre of the fundamental group is trivial, and if $M$ is isometrically embedded into a Euclidean space of dimension at least $3$, then the isometric embedding must violate a certain dynamical, kinetic energy-related condition (the "rigid isotopy extension property" in Definition 1.1). The arguments are motivated by the incompressible Euler equations with prescribed initial and terminal configurations in hydrodynamics.