论文标题

通过不可压缩的Euler方程,一种动态的 - 流体障碍物,用于riemannian歧管的平滑等轴测嵌入

A dynamical--topological obstruction for smooth isometric embeddings of Riemannian manifolds via incompressible Euler equations

论文作者

Li, Siran

论文摘要

我们获得了一种动力学的 - 对静脉内嵌入的构图障碍,其中包括$ m $的第一个真正的同源性是不乏味的,如果基本组的中心是微不足道的,那么如果$ m $的第一个真正的同源性是微不足道的,那么如果$ m $是exementy obrate insmenty insmenty insementy insemention ty $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3动力学的,动力学相关的条件(定义1.1中的“刚性同位素扩展特性”)。这些参数是由不可压缩的Euler方程激励的,这些方程在流体动力学中具有规定的初始和终端配置。

We obtain a dynamical--topological obstruction for the existence of isometric embedding of a Riemannian manifold-with-boundary $(M,g)$: if the first real homology of $M$ is nontrivial, if the centre of the fundamental group is trivial, and if $M$ is isometrically embedded into a Euclidean space of dimension at least $3$, then the isometric embedding must violate a certain dynamical, kinetic energy-related condition (the "rigid isotopy extension property" in Definition 1.1). The arguments are motivated by the incompressible Euler equations with prescribed initial and terminal configurations in hydrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源