论文标题
a^n的最低临界定期内态性
Minimally critical regular endomorphisms of A^N
论文作者
论文摘要
我们研究了n = 1时限制单次政治多项式类别的A^n的一类内态性的动力学。在复数上,我们获得了Lyapunov指数总和的下限,以及概括Mandelbrot集的紧凑性的说明。在代数数量上,我们获得了对临界高度的估计,并且在一般的代数封闭场上,我们获得了这种形式的后有限形态的刚性结果。
We study the dynamics of a class of endomorphisms of A^N which restricts, when N = 1, to the class of unicritical polynomials. Over the complex numbers, we obtain lower bounds on the sum of Lyapunov exponents, and a statement which generalizes the compactness of the Mandelbrot set. Over the algebraic numbers, we obtain estimates on the critical height, and over general algebraically closed fields we obtain some rigidity results for post-critically finite morphisms of this form.