论文标题
纠结磁场的弹性
Elasticity of tangled magnetic fields
论文作者
论文摘要
不可压缩理想的磁性水力动力学和非导向流体的动力学之间的基本差异是,磁场发挥了反对其弯曲的张力。磁场的行为就像弹性字符串螺纹螺纹。因此,自然要期望以较小的尺度纠结的磁场应以弹性方式抵抗大型剪切,就像缠结的弹性串球对脉冲的弹性响应一样。此外,纠结的场应支持“磁弹性波”的传播,即直磁场上Alfvén波的各向同性类似物。在这里,我们在平衡纠结的场合构型的理想化环境中研究磁弹性。与以前的治疗相反,我们明确说明了麦克斯韦压力的间歇性,并表明这种间歇性必定会降低稳定的磁场配置中磁弹性波的频率。我们开发一种平均场形式主义来描述磁弹性行为,由于大规模和小规模动作的耦合而保留了前阶校正,并解决了经受大规模剪切的粘性液体的初始值问题,这表明小规模运动的大型运动的发展会导致大型粘膜的大型粘膜的发展。最后,我们使用在纠结的无力磁场平衡上对静波的数值模拟测试这些分析预测。
The fundamental difference between incompressible ideal magnetohydrodynamics and the dynamics of a non-conducting fluid is that magnetic fields exert a tension force that opposes their bending; magnetic fields behave like elastic strings threading the fluid. It is natural, therefore, to expect that a magnetic field tangled at small length scales should resist a large-scale shear in an elastic way, much as a ball of tangled elastic strings responds elastically to an impulse. Furthermore, a tangled field should support the propagation of `magnetoelastic waves', the isotropic analogue of Alfvén waves on a straight magnetic field. Here, we study magnetoelasticity in the idealised context of an equilibrium tangled field configuration. In contrast to previous treatments, we explicitly account for intermittency of the Maxwell stress, and show that this intermittency necessarily decreases the frequency of magnetoelastic waves in a stable field configuration. We develop a mean-field formalism to describe magnetoelastic behaviour, retaining leading-order corrections due to the coupling of large- and small-scale motions, and solve the initial-value problem for viscous fluids subjected to a large-scale shear, showing that the development of small-scale motions results in anomalous viscous damping of large-scale waves. Finally, we test these analytic predictions using numerical simulations of standing waves on tangled, linear force-free magnetic-field equilibria.