论文标题
在旋转图上量子行走:磁性和纠缠
Quantum walk on a graph of spins: magnetism and entanglement
论文作者
论文摘要
我们在图上引入了量子步行的模型,在图中,粒子在相邻节点之间跳跃,并与坐在边缘上的独立旋转相互作用。纠缠与沃克传播。我们将此模型应用于一个维晶格的情况,以研究其磁性和纠缠特性。在连续限制中,我们恢复了一个描述旋转进动的Landau-Lifshitz方程。观察到丰富的动力学,并具有颗粒传播和定位的方式,以及自旋振荡和放松。渐近状态的纠缠遵循大多数参数的体积定律(硬币旋转角度和粒子旋转耦合)。
We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one dimensional lattice, to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).