论文标题
有条件的粒子过滤器,具有弥漫性初始分布
Conditional particle filters with diffuse initial distributions
论文作者
论文摘要
条件粒子过滤器(CPF)是一般非线性/非高斯隐藏马尔可夫模型的强大平滑算法。但是,CPF在统计应用中常见的弥散性初始分布中效率低下或难以应用。我们提出了一种简单但通常适用的辅助变量方法,该方法可以与CPF一起使用,以便使用弥漫性初始分布进行有效的推断。该方法仅需要可模拟的马尔可夫过渡,这些过渡相对于初始分布是可逆的,这可能是不当的。我们特别关注随机行走类型的转变,这些转变相对于均匀的初始分布(在某些域上)以及高斯初始分布的自回旋内核是可逆的。我们建议在方法中使用在线改编。在随机步行过渡的情况下,我们的适应性使用估计的协方差和接受率适应,我们详细介绍了它们的理论有效性。我们使用线性高斯随机步行模型,随机波动率模型和具有时变透射率的随机流行室模型测试了我们的方法。实验发现表明,与将初始状态视为参数的直接粒子gibbs算法相比,我们的方法在几乎没有用户规范的情况下可靠地工作,并且可以更好地混合。
Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random-walk type transitions which are reversible with respect to a uniform initial distribution (on some domain), and autoregressive kernels for Gaussian initial distributions. We propose to use on-line adaptations within the methods. In the case of random-walk transition, our adaptations use the estimated covariance and acceptance rate adaptation, and we detail their theoretical validity. We tested our methods with a linear-Gaussian random-walk model, a stochastic volatility model, and a stochastic epidemic compartment model with time-varying transmission rate. The experimental findings demonstrate that our method works reliably with little user specification, and can be substantially better mixing than a direct particle Gibbs algorithm that treats initial states as parameters.