论文标题

通过混合限制的半监督学习和双UNET在3D US中深Q网络驱动的导管分割

Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid Constrained Semi-Supervised Learning and Dual-UNet

论文作者

Yang, Hongxu, Shan, Caifeng, Kolen, Alexander F., de With, Peter H. N.

论文摘要

3D超声波中的导管分割对于计算机辅助心脏干预很重要。但是,需要大量标记的图像来训练成功的深卷积神经网络(CNN)以分割导管,这是昂贵且耗时的。在本文中,我们提出了一种新型的导管分割方法,该方法要求的注释少于监督学习方法,但仍能取得更好的性能。我们的计划将深入的Q学习视为关注前的步骤,该步骤避免了体素级别的注释,并且可以有效地定位目标导管。使用检测到的导管,将基于斑块的双UNET应用于3D体积数据中的导管。为了用有限的标记图像训练双UNET并利用未标记的图像的信息,我们提出了一种新型的半监督方案,该方案基于预测的混合约束来利用未标记的图像。实验表明,所提出的方案比最先进的半监督方法具有更高的性能,而这表明我们的方法能够从大规模的未标记图像中学习。

Catheter segmentation in 3D ultrasound is important for computer-assisted cardiac intervention. However, a large amount of labeled images are required to train a successful deep convolutional neural network (CNN) to segment the catheter, which is expensive and time-consuming. In this paper, we propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method, but nevertheless achieves better performance. Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation and which can efficiently localize the target catheter. With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data. To train the Dual-UNet with limited labeled images and leverage information of unlabeled images, we propose a novel semi-supervised scheme, which exploits unlabeled images based on hybrid constraints from predictions. Experiments show the proposed scheme achieves a higher performance than state-of-the-art semi-supervised methods, while it demonstrates that our method is able to learn from large-scale unlabeled images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源