论文标题
TweetScov19-关于COVID-19大流行的语义注释推文的知识库
TweetsCOV19 -- A Knowledge Base of Semantically Annotated Tweets about the COVID-19 Pandemic
论文作者
论文摘要
公开可用的社交媒体档案促进了社会科学的研究,并为培训和测试广泛的机器学习和自然语言处理方法提供了语料库。关于2019年冠状病毒病(Covid-19)的爆发,Twitter上的在线论述反映了与大流行本身有关的公众舆论和看法,以及减轻措施及其社会影响。了解这种话语,其演变以及与现实世界事件或(MIS)信息的相互依存关系可以促进有价值的见解。另一方面,此类语料库是针对诸如情感分析,事件检测或实体识别等任务的计算方法的关键促进者。但是,获取,归档和语义注释大量推文是昂贵的。在本文中,我们描述了TweetScov19,这是一个目前超过800万条推文的公开知识库,涵盖了2019年10月至2020年4月。关于推文以及提取的实体,主题标签,用户的提及,情感,情感和URL的元数据,使用已建立的RDF/socabularies揭示了知识群体,并提供了一个无关紧要的群体群体,这些群体范围却是指定范围的。在数据集的描述及其提取和注释过程之后,我们提出了语料库的初始分析和用例。
Publicly available social media archives facilitate research in the social sciences and provide corpora for training and testing a wide range of machine learning and natural language processing methods. With respect to the recent outbreak of the Coronavirus disease 2019 (COVID-19), online discourse on Twitter reflects public opinion and perception related to the pandemic itself as well as mitigating measures and their societal impact. Understanding such discourse, its evolution, and interdependencies with real-world events or (mis)information can foster valuable insights. On the other hand, such corpora are crucial facilitators for computational methods addressing tasks such as sentiment analysis, event detection, or entity recognition. However, obtaining, archiving, and semantically annotating large amounts of tweets is costly. In this paper, we describe TweetsCOV19, a publicly available knowledge base of currently more than 8 million tweets, spanning October 2019 - April 2020. Metadata about the tweets as well as extracted entities, hashtags, user mentions, sentiments, and URLs are exposed using established RDF/S vocabularies, providing an unprecedented knowledge base for a range of knowledge discovery tasks. Next to a description of the dataset and its extraction and annotation process, we present an initial analysis and use cases of the corpus.