论文标题

特殊球形空间形式的细胞化和$ sl_3(\ mathbb {r})$的标志歧管

Cellularization for exceptional spherical space forms and the flag manifold of $SL_3(\mathbb{R})$

论文作者

Chirivi, Rocco, Garnier, Arthur, Spreafico, Mauro

论文摘要

我们构建了$(4N-1)$ - 球体相对于二进制多面体组的显式均值细胞分解,并描述了相关的细胞同源性链复合物。作为二进制八面体案例的推论,我们推断出$ sl_3(\ Mathbb {r})$的flag歧管的$ \ mathfrak {s} _3 $ - equivariant分解。

We construct an explicit equivariant cellular decomposition of the $(4n-1)$-sphere with respect to binary polyhedral groups, and describe the associated cellular homology chain complex. As a corollary of the binary octahedral case, we deduce an $\mathfrak{S}_3$-equivariant decomposition of the flag manifold of $SL_3(\mathbb{R})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源