论文标题

超越网格:自适应离散化的多目标贝叶斯优化

Beyond Grids: Multi-objective Bayesian Optimization With Adaptive Discretization

论文作者

Nika, Andi, Elahi, Sepehr, Ararat, Çağın, Tekin, Cem

论文摘要

我们考虑了优化矢量价值的目标函数$ \ boldsymbol {f} $从高斯过程(GP)采样的问题,其索引集是一个行为良好的,紧凑的度量空间$({\ cal x},d)$的设计。我们假设$ \ boldsymbol {f} $事先未知,并且在design $ x $上评估$ \ boldsymbol {f} $会导致对$ \ boldsymbol {f}(x)$的嘈杂观察。由于当$ {\ cal x} $的基数很大时,通过详尽的搜索确定帕累托的最佳设计是不可行的,因此我们提出了一种称为Adaptive $ \boldsymbolε$ -PAL的算法,利用了GP-Samplyed功能的平稳性和$(\ cal x} $ delce fack fack)。从本质上讲,自适应$ \boldsymbolε$ -PAL采用基于树的自适应离散技术来识别$ \boldsymbolε$ -Carcurate Pareto的设计,以尽可能少的评估进行。我们在$ \boldsymbolε$ -Cpurate Pareto设置识别的样本复杂性上同时提供信息类型和度量尺寸型界限。我们还通过实验表明,我们的算法表现优于其他帕累托集识别方法。

We consider the problem of optimizing a vector-valued objective function $\boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({\cal X},d)$ of designs. We assume that $\boldsymbol{f}$ is not known beforehand and that evaluating $\boldsymbol{f}$ at design $x$ results in a noisy observation of $\boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${\cal X}$ is large, we propose an algorithm, called Adaptive $\boldsymbolε$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({\cal X},d)$ to learn fast. In essence, Adaptive $\boldsymbolε$-PAL employs a tree-based adaptive discretization technique to identify an $\boldsymbolε$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $\boldsymbolε$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源