论文标题
在强的非核管背景中带电粒子的非线性动力学
Nonlinear dynamics of a charged particle in a strong non-null knot wave background
论文作者
论文摘要
在本文中,我们研究了带电粒子与非零电磁结波背景相互作用的动力学。我们分析了汉密尔顿 - 雅各比形式主义中的经典系统,并找到了粒子的作用,线性动量和轨迹。另外,我们计算沿结波的有效质量和发射辐射。接下来,我们使用强场QED规范形式主义在经典的强结波背景中量化系统。我们明确构建毛茸茸的图片,并计算Dirac方程的Volkov解决方案。作为一个应用程序,我们讨论了单次康普顿效应,其中我们确定了$ s $ -matrix的一般形式。此外,我们详细讨论了两个简单背景中过渡矩阵中的第一个部分振幅,并表明这些幅度相同。
In this paper, we study the dynamics of the charged particle interacting with the non-null electromagnetic knot wave background. We analyse the classical system in the Hamilton-Jacobi formalism and find the action, the linear momentum and the trajectory of the particle. Also, we calculate the effective mass and the emitted radiation along the knot wave. Next, we quantize the system in the classical strong knot wave background by using the strong-field QED canonical formalism. We explicitly construct the Furry picture and calculate the Volkov solutions of the Dirac equation. As an application, we discuss the one-photon Compton effect where we determine the general form of the $S$-matrix. Also, we discuss in details the first partial amplitudes in the transition matrix in two simple backgrounds and show that there is a pair of states for which these amplitudes are identical.