论文标题
随机$ t $ -j $型号中的异常密度波动
Anomalous density fluctuations in a random $t$-$J$ model
论文作者
论文摘要
先前的作品(Joshi等人,Arxiv:1912.08822)在非零掺杂的限制点上,以$ t $ - $ J $模型进行了全能和随机的跳和旋转交换,并主张与丘比特人的现象学相关。我们将此模型扩展到包括均方强度$ k $的全能和随机密度密度相互作用。在疾病的固定实现以及跳跃,交换和密度相互作用的特定值中,该模型是超对称的。但是,在相互作用上独立平均后,我们没有发现超对称性。使用先前开发的重新归一化组分析,我们找到了一个新的固定点,该点为non-Zero $ k $。但是,在我们的扰动分析中,此固定点对先前发现的固定点不稳定。我们计算表征两个固定点密度波动的指数:该指数决定电子损失光谱的光谱。
A previous work (Joshi et al., arXiv:1912.08822) found a deconfined critical point at non-zero doping in a $t$-$J$ model with all-to-all and random hopping and spin exchange, and argued for its relevance to the phenomenology of the cuprates. We extend this model to include all-to-all and random density-density interactions of mean-square strength $K$. In a fixed realization of the disorder, and for specific values of the hopping, exchange, and density interactions, the model is supersymmetric; but, we find no supersymmetry after independent averages over the interactions. Using the previously developed renormalization group analysis, we find a new fixed point at non-zero $K$. However, this fixed point is unstable towards the previously found fixed point at $K=0$ in our perturbative analysis. We compute the exponent characterizing density fluctuations at both fixed points: this exponent determines the spectrum of electron energy-loss spectroscopy.