论文标题

霍夫史塔特拓扑:高通量的非晶体拓扑材料

Hofstadter Topology: Non-crystalline Topological Materials at High Flux

论文作者

Herzog-Arbeitman, Jonah, Song, Zhi-Da, Regnault, Nicolas, Bernevig, B. Andrei

论文摘要

霍夫史塔特问题是量子厅效应的晶格类似物,是施加磁场引起的拓扑范围的范例。通常,霍夫史塔特问题涉及将$ \ sim 10^4 $ t磁场添加到微不足道的频带结构中。在这项工作中,我们表明,当将磁场添加到最初的拓扑结构中时,就会出现大量可能的阶段。值得注意的是,我们发现在任何晶体绝缘子中都无法实现的拓扑阶段。我们证明,通过非零CHERN数的哈密顿量螺纹通量在固定填充下实施相变的磁通量,并且具有非平凡的Kane-Mele不变性的2D Hamiltonian在周期性通量中会产生3D TI或3D弱Ti相。然后,我们研究受两倍旋转和时间反向的乘积保护的脆弱拓扑,并表明存在一个3D高阶Ti相,其中角模式通过通量泵送。我们表明,扭曲的双层石墨烯的模型实现了这一阶段。我们的结果主要依赖于以通量的理性值存在的磁翻译组。 MoiréLattices的出现也使我们的工作在实验上相关。在Moiré晶格中,订单$ 1-30 $ t的字段有可能达到每个plaquette的通量,并允许进入我们拟议的Hofstadter拓扑阶段。

The Hofstadter problem is the lattice analog of the quantum Hall effect and is the paradigmatic example of topology induced by an applied magnetic field. Conventionally, the Hofstadter problem involves adding $\sim 10^4$ T magnetic fields to a trivial band structure. In this work, we show that when a magnetic field is added to an initially topological band structure, a wealth of remarkable possible phases emerges. Remarkably, we find topological phases which cannot be realized in any crystalline insulators. We prove that threading magnetic flux through a Hamiltonian with nonzero Chern number enforces a phase transition at fixed filling and that a 2D Hamiltonian with nontrivial Kane-Mele invariant produces a 3D TI or 3D weak TI phase in periodic flux. We then study fragile topology protected by the product of two-fold rotation and time-reversal and show that there exists a 3D higher order TI phase where corner modes are pumped by flux. We show that a model of twisted bilayer graphene realizes this phase. Our results rely primarily on the magnetic translation group which exists at rational values of the flux. The advent of Moiré lattices also renders our work relevant experimentally. In Moiré lattices, it is possible for fields of order $1-30$ T to reach one flux per plaquette and allow access to our proposed Hofstadter topological phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源