论文标题

通过生成对抗网络生成微观结构,用于异质,拓扑复杂的3D材料

Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials

论文作者

Hsu, Tim, Epting, William K., Kim, Hokon, Abernathy, Harry W., Hackett, Gregory A., Rollett, Anthony D., Salvador, Paul A., Holm, Elizabeth A.

论文摘要

使用大规模的,实验捕获的3D微结构数据集,我们实现了生成对抗网络(GAN)框架,以学习和生成固体氧化物燃料电池电极的3D微结构。生成的微观结构在视觉上,统计和拓扑上是现实的,具有微结构参数的分布,包括体积分数,粒径,表面积,曲折和三相边界密度,与原始微观结构的高度相似。将这些结果比较并与来自既定的,基于谷物的一代算法的结果进行比较(Dream.3d)。重要的是,使用本地分辨的有限元模型对电化学性能的模拟表明,GAN生成的微结构与原始的性能分布非常匹配,而Dream.3D则导致显着差异。生成机器学习模型以高忠诚重新创建微观结构的能力表明,复杂微观结构的本质可以被捕获并以紧凑而可操作的形式捕获和表示。

Using a large-scale, experimentally captured 3D microstructure dataset, we implement the generative adversarial network (GAN) framework to learn and generate 3D microstructures of solid oxide fuel cell electrodes. The generated microstructures are visually, statistically, and topologically realistic, with distributions of microstructural parameters, including volume fraction, particle size, surface area, tortuosity, and triple phase boundary density, being highly similar to those of the original microstructure. These results are compared and contrasted with those from an established, grain-based generation algorithm (DREAM.3D). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN generated microstructures closely match the performance distribution of the original, while DREAM.3D leads to significant differences. The ability of the generative machine learning model to recreate microstructures with high fidelity suggests that the essence of complex microstructures may be captured and represented in a compact and manipulatable form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源