论文标题

受碱 - 二利反应影响的混凝土结构的多尺度建模:偶联介质损伤演化和宏观混凝土劣化

Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration

论文作者

Gallyamov, Emil R., Ramos, Aurelia Isabel Cuba, Corrado, Mauro, Rezakhani, Roozbeh, Molinari, Jean-Francois

论文摘要

制定了基于一阶Fe 2均质化技术的有限元方法,以分析碱性反应诱导的混凝土结构中的损伤,通过将宏尺度的混凝土降解与中等尺度的反应范围联系起来。在中尺度上,混凝土被认为是由嵌入砂浆基质中的聚集体组成的异质材料。碱 - 硅反应(ASR)的机械效应是通过在聚集体内部的几个局部斑点中应用温度依赖性特征量建模的,并使用连续损伤模型对混凝土的机械降解进行建模,该损伤模型能够重现复杂的ASR裂纹网络。然后,通过均质的代表体积元件(RVE)的机械响应来计算每个宏观有限元的有效刚度张量和有效应力张量,从而避免了宏观尺度上现象学本质的法律的使用。宏观和中尺度之间的收敛是通过迭代程序实现的。将ASR实验室标本的2D模型分析为概念证明。该模型能够说明在宏观尺度上施加的加载以及在中尺度上的ASR产品扩展。结果表明,宏观应力状态会影响下面rves内部损害的方向。在RVE内部对齐的情况下,有效的刚度变为各向异性。

A finite-element approach based on the first-order FE 2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effective stiffness tensor and the effective stress tensor for each macroscopic finite element are computed by homogenising the mechanical response of the corresponding representative volume element (RVE), thus avoiding the use of phenomenological constitutive laws at the macro-scale. Convergence between macro- and meso-scales is achieved via an iterative procedure. A 2D model of an ASR laboratory specimen is analysed as a proof of concept. The model is able to account for the loading applied at the macro-scale and the ASR-product expansion at the meso-scale. The results demonstrate that the macroscopic stress state influences the orientation of damage inside the underlying RVEs. The effective stiffness becomes anisotropic in cases where damage is aligned inside the RVE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源