论文标题
用于学习元功能的基于分布的深层网络
Distribution-Based Invariant Deep Networks for Learning Meta-Features
论文作者
论文摘要
从概率分布中进行深度学习的最新进展成功地实现了分布样本中的分类或回归,因此在样本排列的情况下不变。该论文的首要贡献是扩展这些神经体系结构,以达到特征排列的不变性。所提出的称为DIDA的体系结构继承了通用近似的NN属性及其稳健性W.R.T.建立了输入分布的LIPSCHITZ结合的转换。第二个贡献是从经验和相对证明该方法在数据集级别定义的两个任务上的优点。在这两个任务上,DIDA都学会了支持(标记)数据集的表征的元功能。第一个任务包括预测是否从同一初始数据集提取两个数据集补丁。第二个任务包括预测在固定算法下通过超参数配置实现的学习绩效(K-NN,SVM中的范围,逻辑回归和SGD线性分类器)是否占据了另一种配置的占主导地位,用于从OpenML Benchmarkskmarking Suite中提取的数据集。在这两项任务上,DIDA的表现都优于最新技术:DSS(Maron等,2020)和dataset2vec(Jomaa等,2019)体系结构,以及基于文献的手工制作的元游戏的模型。
Recent advances in deep learning from probability distributions successfully achieve classification or regression from distribution samples, thus invariant under permutation of the samples. The first contribution of the paper is to extend these neural architectures to achieve invariance under permutation of the features, too. The proposed architecture, called Dida, inherits the NN properties of universal approximation, and its robustness w.r.t. Lipschitz-bounded transformations of the input distribution is established. The second contribution is to empirically and comparatively demonstrate the merits of the approach on two tasks defined at the dataset level. On both tasks, Dida learns meta-features supporting the characterization of a (labelled) dataset. The first task consists of predicting whether two dataset patches are extracted from the same initial dataset. The second task consists of predicting whether the learning performance achieved by a hyper-parameter configuration under a fixed algorithm (ranging in k-NN, SVM, logistic regression and linear classifier with SGD) dominates that of another configuration, for a dataset extracted from the OpenML benchmarking suite. On both tasks, Dida outperforms the state of the art: DSS (Maron et al., 2020) and Dataset2Vec (Jomaa et al., 2019) architectures, as well as the models based on the hand-crafted meta-features of the literature.