论文标题
螺旋星系的自旋均等II:使用Subaru超级胶卷调查和深度学习的大数据的80k螺旋星系目录
Spin Parity of Spiral Galaxies II: A catalogue of 80k spiral galaxies using big data from the Subaru Hyper Suprime-Cam Survey and deep learning
论文作者
论文摘要
我们使用来自Subaru/Hyper Suprime-CAM(HSC)调查的大图像数据和卷积神经网络(CNN)基于深度学习的深度学习技术的大图像数据报告了星系的自动形态学分类。 HSC I波段图像比Sloan Digital Sky Survey(SDSS)深约25倍,并具有两倍的空间分辨率,使我们能够识别Z> 0.1的星系中的螺旋臂和棒等子结构。我们通过使用1447 s-Spirals,1382 Z-Spirals和51,650个非螺旋体的HSC图像来训练CNN分类器。由于每个班级的图像数量不平衡,我们通过水平翻转,旋转和续订图像来增加螺旋星系的数据,以使三个类别的数量相似。训练有素的CNN模型正确对97.5%的验证数据进行了分类,该数据不用于培训。我们将CNN应用于320摄氏度^2的I-Band幅度I <20的HSC图像。鉴定出37,917 s-spirals和38,718个Z-Spirals,表明两个类别的数量之间没有显着差异。在总共76,635个螺旋星系中,有48,576个位于Z> 0.2,我们几乎无法识别SDSS图像中的螺旋臂。我们的尝试表明,HSC大数据和CNN的组合具有对各种形态的各种形态(例如条形,合并和强镜对象)的巨大潜力。
We report an automated morphological classification of galaxies into S-wise spirals, Z-wise spirals, and non-spirals using big image data taken from Subaru/Hyper Suprime-Cam (HSC) Survey and a convolutional neural network(CNN)-based deep learning technique. The HSC i-band images are about 25 times deeper than those from the Sloan Digital Sky Survey (SDSS) and have a two times higher spatial resolution, allowing us to identify substructures such as spiral arms and bars in galaxies at z>0.1. We train CNN classifiers by using HSC images of 1447 S-spirals, 1382 Z-spirals, and 51,650 non-spirals. As the number of images in each class is unbalanced, we augment the data of spiral galaxies by horizontal flipping, rotation, and rescaling of images to make the numbers of three classes similar. The trained CNN models correctly classify 97.5% of the validation data, which is not used for training. We apply the CNNs to HSC images of a half million galaxies with an i-band magnitude of i<20 over an area of 320 deg^2. 37,917 S-spirals and 38,718 Z-spirals are identified, indicating no significant difference between the numbers of two classes. Among a total of 76,635 spiral galaxies, 48,576 are located at z>0.2, where we are hardly able to identify spiral arms in the SDSS images. Our attempt demonstrates that a combination of the HSC big data and CNNs has a large potential to classify various types of morphology such as bars, mergers and strongly-lensed objects.