论文标题
几乎是Hermitian 6-manifolds的DT-Instanton方程式
The DT-instanton equation on almost Hermitian 6-manifolds
论文作者
论文摘要
本文研究了一组部分微分方程,即DT-Instanton方程,其解决方案可以视为Hermitian-Yang-Mills连接概念的概括。这些方程式的名字归功于他们希望它们在将DT-Invariant扩展到Symplectic 6 manifolds的情况下可能有用。 在本文中,我们给出了非kähler歧管上非亚伯和不可还原的DT-Instantons的第一个例子。这些是在$ \ mathbb {c}^3 $中的全旗的多种旗帜上的所有均质几乎几乎荒木结构的构建。与存在结果一起,我们得出了针对此类结构的同质DT-Instantons的非常明确的分类。使用此分类,我们能够观察到现象,在这种现象中,通过改变基本的几乎冬宫结构,不可还原的DT-Instanton变得可减少,然后消失。这是通过稳定壁的非kähler类似物,在弦理论中可以将其解释为内部仪表场的超对称性破裂。
This article investigates a set of partial differential equations, the DT-instanton equations, whose solutions can be regarded as a generalization of the notion of Hermitian-Yang-Mills connections. These equations owe their name to the hope that they may be useful in extending the DT-invariant to the case of symplectic 6-manifolds. In this article, we give the first examples of non-Abelian and irreducible DT-instantons on non-Kähler manifolds. These are constructed for all homogeneous almost Hermitian structures on the manifold of full flags in $\mathbb{C}^3$. Together with the existence result we derive a very explicit classification of homogeneous DT-instantons for such structures. Using this classification we are able to observe phenomena where, by varying the underlying almost Hermitian structure, an irreducible DT-instanton becomes reducible and then disappears. This is a non-Kähler analogue of passing a stability wall, which in string theory can be interpreted as supersymmetry breaking by internal gauge fields.