论文标题
Abelian固定点的无内态性和Yang-Baxter方程
Abelian fixed point free endomorphisms and the Yang-Baxter equation
论文作者
论文摘要
我们获得了一个简单的解决方案的元素,可以理解Yang-baxter方程,该方程仅取决于考虑有限群体的特殊内态性。我们展示了这种内态如何引起两个非脱位溶液,即Yang-baxter方程,彼此相反的解决方案。我们使用二面,交替,对称和元环体组给出了具体的例子。
We obtain a simple family of solutions to the set-theoretic Yang-Baxter equation, one which depends only on considering special endomorphisms of a finite group. We show how such an endomorphism gives rise to two non-degenerate solutions to the Yang-Baxter equation, solutions which are inverse to each other. We give concrete examples using dihedral, alternating, symmetric, and metacyclic groups.