论文标题

CLC:DNS 2020挑战的复杂线性编码

CLC: Complex Linear Coding for the DNS 2020 Challenge

论文作者

Schröter, Hendrik, Rosenkranz, Tobias, Escalante-B., Alberto N., Maier, Andreas

论文摘要

复杂的价值处理将基于深度学习的语音增强和信号提取提高到了新的水平。 通常,降低降低过程基于应用于噪声谱图的时频(TF)掩码。复杂的掩码(CM)通常由于其修改相位的能力而胜过实质性掩码。 最近提出的工作是使用称为复杂线性编码(CLC)的系数的复杂线性组合,而不是用掩模的点乘积。 这允许从以前的和未来的时间步骤中合并信息,从而在某些噪声条件下带来优于基于面罩的增强性能。 实际上,线性组合能够建模频带中的频谱之类的准稳态属性。 在这项工作中,我们将CLC应用于深噪声抑制(DNS)挑战,并提出CLC作为基于传统掩护的处理的替代方案,例如基线使用。 我们使用提供的测试集以及带有现实世界固定和非平稳噪声的其他验证集评估了我们的模型。 根据已发布的测试集,我们胜过基线W.R.T.比例独立信号失真比(SI-SDR)约为3dB。

Complex-valued processing brought deep learning-based speech enhancement and signal extraction to a new level. Typically, the noise reduction process is based on a time-frequency (TF) mask which is applied to a noisy spectrogram. Complex masks (CM) usually outperform real-valued masks due to their ability to modify the phase. Recent work proposed to use a complex linear combination of coefficients called complex linear coding (CLC) instead of a point-wise multiplication with a mask. This allows to incorporate information from previous and optionally future time steps which results in superior performance over mask-based enhancement for certain noise conditions. In fact, the linear combination enables to model quasi-steady properties like the spectrum within a frequency band. In this work, we apply CLC to the Deep Noise Suppression (DNS) challenge and propose CLC as an alternative to traditional mask-based processing, e.g. used by the baseline. We evaluated our models using the provided test set and an additional validation set with real-world stationary and non-stationary noises. Based on the published test set, we outperform the baseline w.r.t. the scale independent signal distortion ratio (SI-SDR) by about 3dB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源