论文标题

晶格鲍尔茨曼方案的意外收敛

Unexpected convergence of lattice Boltzmann schemes

论文作者

Boghosian, Bruce, Dubois, François, Graille, Benjamin, Lallemand, Pierre, Tekitek, Mohamed-Mahdi

论文摘要

在这项工作中,我们从数值上研究标量D2Q9晶格Boltzmann方案的收敛性,具有多个松弛时间,而时间步与空间步骤成正比并且趋于零。我们通过理论和数值实验的结合来做到这一点。当所有放松参数固定并且时间步长趋于零时,经典的形式分析表明,数值解会收敛到热方程的解决方案,并具有约束,从而连接了扩散率,空间步骤和动量的松弛系数。如果固定扩散率并且空间步骤趋于零,则动量的弛豫参数非常小,从而导致先前的分析和数值结果之间的差异。我们基于晶格玻尔兹曼方案的分散方程,对这种特定的逃生放松的方法进行了新的分析。由于这种形式的分析,新的渐近部分微分方程是阻尼的声学系统。互补的数值实验确定了标量D2Q9晶格Boltzmann方案的收敛性,具有多个弛豫时间和声学缩放,在这种evaneScent松弛的特定情况下,朝向阻尼声系统的数值解。

In this work, we study numerically the convergence of the scalar D2Q9 lattice Boltzmann scheme with multiple relaxation times when the time step is proportional to the space step and tends to zero. We do this by a combination of theory and numerical experiment. The classical formal analysis when all the relaxation parameters are fixed and the time step tends to zero shows that the numerical solution converges to solutions of the heat equation, with a constraint connecting the diffusivity, the space step and the coefficient of relaxation of the momentum. If the diffusivity is fixed and the space step tends to zero, the relaxation parameter for the momentum is very small, causing a discrepency between the previous analysis and the numerical results. We propose a new analysis of the method for this specific situation of evanescent relaxation, based on the dispersion equation of the lattice Boltzmann scheme. A new asymptotic partial differential equation, the damped acoustic system, is emergent as a result of this formal analysis. Complementary numerical experiments establish the convergence of the scalar D2Q9 lattice Boltzmann scheme with multiple relaxation times and acoustic scaling in this specific case of evanescent relaxation towards the numerical solution of the damped acoustic system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源