论文标题

在兰兰兹的光谱定理上

On the spectral Theorem of Langlands

论文作者

Delorme, Patrick

论文摘要

我们表明,由Eisenstein系列的波数据包生成的$ L^2(g(f)\ Backslash G(\ a))$的希尔伯特子空间是由离散系列构建的。加上Lapid \ cite {l1}的工作,它基于伯恩斯坦和拉皮德\ cite {bl}在Eisenstein系列的Meromorphic Conteriation上的工作,实现了Langlands的光谱定理的证明。我不得不说我无法完成较早版本的证明。取而代之的是,我在紧凑型集合上使用截断,就像亚瑟所做的那样,在\ cite {alt}中证明了本地跟踪公式。

We show that the Hilbert subspace of $L^2(G(F)\backslash G(\A))$ generated by wave packets of Eisenstein series built from discrete series is the whole space. Together with the work of Lapid \cite{L1}, it achieves a proof of the spectral theorem of Langlands based on the work of Bernstein and Lapid \cite{BL} on the meromorphic continuation of Eisenstein series. I have to say that I was unable to complete the proof of an earlier version. Instead, I use truncation on compact sets, as Arthur did to prove the Local Trace Formula in \cite{Alt}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源