论文标题

PCW-NET:立体声匹配的金字塔组合和翘曲成本量

PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching

论文作者

Shen, Zhelun, Dai, Yuchao, Song, Xibin, Rao, Zhibo, Zhou, Dingfu, Zhang, Liangjun

论文摘要

现有的基于深度学习的立体声匹配方法要么着重于在目标数据集上实现最佳性能,同时对其他数据集进行概括,要么通过抑制域敏感特征来处理跨域概括,从而导致对性能的重大牺牲。为了解决这些问题,我们提出了PCW-NET,PCW-NET是金字塔组合和基于翘曲成本量的网络,以在各种基准测试的跨域概括和立体声匹配的准确性上达到良好的性能。特别是,我们的PCW-NET专为两个目的而设计。首先,我们在金字塔的上层构建组合量,并开发成本量融合模块以整合它们以进行初始差异估计。多尺度的接受场可以被融合的多尺度组合体积覆盖,因此可以提取域不变特征。其次,我们在金字塔的最后级别上构建扭曲量以进行差异。所提出的翘曲量可以缩小从初始差异搜索范围到细粒度的残留搜索范围,从而可以大大减轻网络在不受约束的残留物搜索空间中找到正确残留物的难度。在培训合成数据集并推广到看不见的真实数据集时,我们的方法显示出强大的跨域概括,并且优于较大利润率的现有最新技术。在对真实数据集进行了微调之后,我们的方法在2012年Kitti上排名第一,在Kitti 2015上排名第二,截至2022年3月7日,在所有已发布的方法中排名第一。该代码将在https://github.com/gallenszl/pcwnet上获得。

Existing deep learning based stereo matching methods either focus on achieving optimal performances on the target dataset while with poor generalization for other datasets or focus on handling the cross-domain generalization by suppressing the domain sensitive features which results in a significant sacrifice on the performance. To tackle these problems, we propose PCW-Net, a Pyramid Combination and Warping cost volume-based network to achieve good performance on both cross-domain generalization and stereo matching accuracy on various benchmarks. In particular, our PCW-Net is designed for two purposes. First, we construct combination volumes on the upper levels of the pyramid and develop a cost volume fusion module to integrate them for initial disparity estimation. Multi-scale receptive fields can be covered by fusing multi-scale combination volumes, thus, domain-invariant features can be extracted. Second, we construct the warping volume at the last level of the pyramid for disparity refinement. The proposed warping volume can narrow down the residue searching range from the initial disparity searching range to a fine-grained one, which can dramatically alleviate the difficulty of the network to find the correct residue in an unconstrained residue searching space. When training on synthetic datasets and generalizing to unseen real datasets, our method shows strong cross-domain generalization and outperforms existing state-of-the-arts with a large margin. After fine-tuning on the real datasets, our method ranks first on KITTI 2012, second on KITTI 2015, and first on the Argoverse among all published methods as of 7, March 2022. The code will be available at https://github.com/gallenszl/PCWNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源