论文标题

通过多层感知器的长期预测车道更改操作

Long-Term Prediction of Lane Change Maneuver Through a Multilayer Perceptron

论文作者

Shou, Zhenyu, Wang, Ziran, Han, Kyungtae, Liu, Yongkang, Tiwari, Prashant, Di, Xuan

论文摘要

行为预测在自主驾驶系统和高级驾驶员援助系统(ADA)中都起着至关重要的作用,因为它增强了车辆对周围环境中迫在眉睫的危害的认识。许多现有的车道变更预测模型将输入侧面或角度信息视为短期(<5秒)的操纵预测。在这项研究中,我们提出了一个长期(5〜10秒)的预测模型,而没有任何侧向或角度信息。引入了三个预测模型,包括逻辑回归模型,多层感知器(MLP)模型和复发性神经网络(RNN)模型,并通过使用现实世界中的NGSIM数据集比较其性能。为了正确标记轨迹数据,本研究提出了一种新的时窗标记方案,通过在正样品和负样本之间添加时间差距。还提出了两种方法来解决不稳定的预测问题,在这些问题中,激进的方法在某些秒内传播了每个积极预测,而保守的方法采用滚动窗口平均值来平滑预测。评估结果表明,开发的预测模型能够以8.05秒的平均高级预测时间捕获75%的实际车道更改操作。

Behavior prediction plays an essential role in both autonomous driving systems and Advanced Driver Assistance Systems (ADAS), since it enhances vehicle's awareness of the imminent hazards in the surrounding environment. Many existing lane change prediction models take as input lateral or angle information and make short-term (< 5 seconds) maneuver predictions. In this study, we propose a longer-term (5~10 seconds) prediction model without any lateral or angle information. Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model, and their performances are compared by using the real-world NGSIM dataset. To properly label the trajectory data, this study proposes a new time-window labeling scheme by adding a time gap between positive and negative samples. Two approaches are also proposed to address the unstable prediction issue, where the aggressive approach propagates each positive prediction for certain seconds, while the conservative approach adopts a roll-window average to smooth the prediction. Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源