论文标题
在深度学习中使用可变长度遗传算法的有效高参数优化
Efficient Hyperparameter Optimization in Deep Learning Using a Variable Length Genetic Algorithm
论文作者
论文摘要
卷积神经网络(CNN)在许多人工智能任务中取得了巨大成功。但是,为CNN找到一套好的超参数仍然是一项艰巨的任务。它通常需要具有深厚知识以及试验和错误的专家。遗传算法已用于高参数优化。但是,具有固定长度染色体的传统遗传算法可能不适合优化深度学习超参数,因为根据模型深度,深度学习模型具有可变数量的超参数。随着深度的增加,超参数的数量呈指数增长,并且搜索变得更加困难。重要的是要有一种有效的算法,可以在合理的时间内找到一个好的模型。在本文中,我们建议使用可变的长度遗传算法(GA)进行系统,自动调整CNN的超参数以提高其性能。实验结果表明,我们的算法可以有效地找到良好的CNN超参数。从我们的实验中可以明显看出,如果花费更多的时间来优化超参数,则可以实现更好的结果。从理论上讲,如果我们有无限的时间和CPU功率,我们可以找到优化的超参数并在将来取得最佳效果。
Convolutional Neural Networks (CNN) have gained great success in many artificial intelligence tasks. However, finding a good set of hyperparameters for a CNN remains a challenging task. It usually takes an expert with deep knowledge, and trials and errors. Genetic algorithms have been used in hyperparameter optimizations. However, traditional genetic algorithms with fixed-length chromosomes may not be a good fit for optimizing deep learning hyperparameters, because deep learning models have variable number of hyperparameters depending on the model depth. As the depth increases, the number of hyperparameters grows exponentially, and searching becomes exponentially harder. It is important to have an efficient algorithm that can find a good model in reasonable time. In this article, we propose to use a variable length genetic algorithm (GA) to systematically and automatically tune the hyperparameters of a CNN to improve its performance. Experimental results show that our algorithm can find good CNN hyperparameters efficiently. It is clear from our experiments that if more time is spent on optimizing the hyperparameters, better results could be achieved. Theoretically, if we had unlimited time and CPU power, we could find the optimized hyperparameters and achieve the best results in the future.