论文标题
使用小逻辑量子架构中的变量耗散改进自主误差校正
Improved autonomous error correction using variable dissipation in small logical qubit architectures
论文作者
论文摘要
随着时间的推移,超导Qubits的相干时间大大改善。此外,使用工程耗散的小型逻辑量子架构已显示出巨大的希望,可以进一步改善逻辑量子歧管的相干性,该逻辑歧管歧管几乎没有物理Qub。然而,通常对小逻辑量子的最佳工作参数通常不太了解。这项工作提出了几种方法,可以通过查看增加复杂性的三种不同情况来查找优先参数配置。我们首先通过偶数与有损物体的耦合来查看单个量子量的状态稳定。我们查看这种误差校正方法中的限制因素,以及如何通过数值优化参数耦合强度与具有有效时间变化的耗散率的有损耗对象来解决这些因素 - 我们将其称为脉冲循环。然后,我们将这种方法转化为更有效的状态稳定化为抽象的三分之三翻转代码,最后查看非常小的逻辑量子量(VSLQ)。通过使用这些技术,我们可以进一步提高不同体系结构的逻辑状态寿命。我们在使用数值优化的固定参数空间上使用脉冲循环时显示出显着的优势。
Coherence times for superconducting qubits have greatly improved over time. Moreover, small logical qubit architectures using engineered dissipation have shown great promise for further improvements in the coherence of a logical qubit manifold comprised of few physical qubits. Nevertheless, optimal working parameters for small logical qubits are generally not well understood. This work presents several approaches to finding preferential parameter configurations by looking at three different cases of increasing complexity. We begin by looking at state stabilization of a single qubit using dissipation via coupling to a lossy object. We look at the limiting factors in this approach to error correction, and how we address those by numerically optimizing the parametric coupling strength with the lossy object having an effective time-varying dissipation rate---we call this a pulse-reset cycle. We then translate this approach to more efficient state stabilization to an abstracted three-qubit flip code, and end by looking at the Very Small Logical Qubit (VSLQ). By using these techniques, we can further increase logical state lifetimes for different architectures. We show significant advantages in using a pulse-reset cycle over numerically optimized, fixed parameter spaces.