论文标题

蒙德里安难题:关于$ m(n)= 0 $ case的界限

The Mondrian Puzzle: A Bound Concerning the $M(n) = 0$ Case

论文作者

O'Kuhn, Cooper, Fellman, Todd

论文摘要

为了响应有关Mondrian难题的数字视频https://www.youtube.com/watch?v=49kvzriofB0,我们提供了一个小于给定阈值$ x $ x $ $ x $ $ m(n)\ neq 0 $ m(n)$ m(n)$ m(n)$ m(n $ m(n ney)的nimian nimian the mondrian nimian in Minim in Minim in Minim in Minim in Minim in Minim in Minim in Minim Inim nim nimian nim nim in Minim in Minim in Minim in Minim in Minim Inim nim nim in I. the mondry in I.在一套不一致的整数矩形中,最大,最小的矩形,$ n $ by $ n $ square。

In response to the Numberphile video regarding the Mondrian Puzzle https://www.youtube.com/watch?v=49KvZrioFB0, we provide a lower bound on how many integers less than a given threshold $x$ satisfy $M(n) \neq 0$ where $M(n)$ is the quantity in which the Mondrian Puzzle is interested, i.e. the minimal difference in area between the largest and smallest rectangle in a set of incongruent, integer-sided rectangles which tile an $n$ by $n$ square.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源