论文标题

Chapman-Jouguet爆炸的速度 - 内部循环不变性定理

A velocity-entropy invariance theorem for the Chapman-Jouguet detonation

论文作者

Vidal, Pierre, Zitoun, Ratiba

论文摘要

Chapman-Jouguet(CJ)平衡爆炸的速度和比熵在初始温度的相同变化下是在初始压力​​的相同变化下是不变的。例如,这导致了其他CJ关系,例如,从唯一的CJ速度计算CJ状态(包括绝热指数),而无需对爆炸产物使用状态方程。对于带有理想产品的气态化学计量爆炸物,具有详细化学平衡的数值计算证实了不变定理为$ \ Mathcal {o}(10^{ - 2} $ \%,以及其他CJ属性,以及$ \ Mathcal {o}(O}(O}(10^o}(10^{ - 1} { - 1} $ \%),供应四次供应范围。 20 \%高于测量结果。

The velocity and specific entropy of the Chapman-Jouguet (CJ) equilibrium detonation are shown to be invariant under the same variations of initial temperature with initial pressure. This leads to additional CJ relations, for example, for calculating the CJ state -- including the adiabatic exponent -- from the only CJ velocity, without using an equation of state for the detonation products. For gaseous stoichiometric explosives with ideal products, numerical calculations with detailed chemical equilibrium confirm the invariance theorem to $\mathcal{O}(10^{-2}$\% and the additional CJ properties to $\mathcal{O}(10^{-1}$\%. However, for four liquid carbon explosives, the predicted CJ pressures are about 20\% higher than the measurements. The analysis emphasizes the limited physical representativeness of the hydrodynamic framework of the modelling, i.e. single-phase inviscid fluids at equilibrium for the initial and final states of the explosive. This invariance may illustrate a general feature of hyperbolic systems and their characteristic surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源