论文标题
观察在多门生天体物理学时代将巨大的黑洞二进制组合在一起的灵感
Observing the inspiral of coalescing massive black hole binaries with LISA in the era of Multi-Messenger Astrophysics
论文作者
论文摘要
Massive black hole binaries (MBHBs) of $10^5 \, \rm M_\odot - 3 \times 10^7 \, \rm M_\odot $ merging in low redshift galaxies ($z\le4$) are sufficiently loud to be detected weeks before coalescence with the Laser Interferometer Space Antenna (LISA).这使我们能够在$ $ $ $ $ $ ply $上执行参数估计$,即作为在灵感阶段合并时间的函数,与计划中的LISA受保护时期的预警和搜索电磁信号有关。在这项工作中,我们研究了天空位置的演变,光度距离,chirp质量和质量比不确定性作为合并之前剩下的时间的功能。总体而言,具有总固有质量$ \ rm m _ {\ rm tot} = 3 \ times 10^5 \,\ rm m_ \ odot $的光系统的特征是不确定性小于重型($ \ rm m _ {\ rm m _ {\ rm tot} = 10^7^7^7 \ \ rm m _ m _ \ odol $)。亮度距离,chirp质量和质量比在灵感末端受到良好的约束。在$ z = 1 $,$ \ rm m _ {\ rm tot} = 3 \ times 10^5 \,\ rm m_ \ odot $可以以$ \ simeq 10^2^2^2^2 \,\ rm deg^2(\ rm deg simeq 1 \ simeq 1^2(rm mer),\ rm merq^2(\ rm simeq 1^2),重MBHB的天空位置可以确定为$ 10 \,\ rm deg 2 $,仅在合并前1小时。然而,中值的不确定性随时间而扩大,在合并前1小时的光(重型)系统之间,在0.04-20 $ \ rm deg^2 $(0.3-3 $ \ times 10^3 \,\ rm deg 2 $)中。在合并时,天空定位将所有质量的$ \ simeq 10^{ - 1} \,\ rm deg^2 $。为了使观察者社区的利益,我们提供了来自模拟的完整数据以及简单且可用的分析拟合,以描述上述参数中不确定性的时间演变,对$ 10^5 $ - $ 10^7 \ $ 10^7 \,\ rm m_ m_ \ rm m_ \ odot $ and rodshift $ and redshift $ and redshift $ 0.3 $ 0.3 $ 0.3 $ $ 0.3 $ - $ 0.3 $ - $ 0.3 $ - $ 0.3 $ - $ 0.3 $ - $ 0.3 $ - 3 $ 3 $ - 有效。
Massive black hole binaries (MBHBs) of $10^5 \, \rm M_\odot - 3 \times 10^7 \, \rm M_\odot $ merging in low redshift galaxies ($z\le4$) are sufficiently loud to be detected weeks before coalescence with the Laser Interferometer Space Antenna (LISA). This allows us to perform the parameter estimation $on$ $the$ $fly$, i.e. as a function of the time to coalescence during the inspiral phase, relevant for early warning of the planned LISA protected periods and for searches of electromagnetic signals. In this work, we study the evolution of the sky position, luminosity distance, chirp mass and mass ratio uncertainties as function of time left before merger. Overall, light systems with total intrinsic mass $\rm M_{\rm tot} = 3 \times 10^5 \, \rm M_\odot$ are characterized by smaller uncertainties than heavy ones ($\rm M_{\rm tot} = 10^7 \, \rm M_\odot$) during the inspiral. Luminosity distance, chirp mass and mass ratio are well constrained at the end of the inspiral. Concerning sky position, at $z=1$, MBHBs with $\rm M_{\rm tot} = 3 \times 10^5 \, \rm M_\odot$ can be localized with a median precision of $\simeq 10^2 \, \rm deg^2 (\simeq 1 \, \rm deg^2)$ at 1 month (1 hour) from merger, while the sky position of heavy MBHBs can be determined to $10 \, \rm deg^2$ only 1 hour before merger. However the uncertainty around the median values broadens with time, ranging in between 0.04 -- 20 $\rm deg^2$ (0.3 -- 3 $\times 10^3 \, \rm deg^2$) for light (heavy) systems at 1 hour before merger. At merger the sky localization improves down to $\simeq 10^{-1} \, \rm deg^2$ for all masses. For the benefit of the observer community, we provide the full set of data from our simulations and simple and ready-to-use analytical fits to describe the time evolution of uncertainties in the aforementioned parameters, valid for systems with total mass between $10^5$--$10^7 \, \rm M_\odot$ and redshift $0.3$--$3$.