论文标题

四点局部gluon s误解的分类

Classification of four-point local gluon S-matrices

论文作者

Chowdhury, Subham Dutta, Gadde, Abhijit

论文摘要

在本文中,我们将四点本地Gluon S-矩阵分类为任意维度。这与\ cite {Chowdhury:2019KAQ}相同,其中四点局部光子S-矩阵和重力S-矩阵被分类。我们针对所有$ n $的量规组明确进行分类$(n)$(n)$(n)$(n)$,但我们的方法很容易概括为其他Lie Groups。该构建涉及将光子和伴随标量的不必要的对称的四点S-矩阵组合到置换对称的四点gluon s-matrix中。我们明确列出了构造的两个组成部分,即置换对称和非对称的四点S型,以及用于任意维度的光子以及均值组的伴随标量和所有$ n $的均值组$(n)$和$ su(n)$和$ su(n)$。在本文中,我们明确列出了以$ d \ geq 9 $生成本地gluon s-matrices的本地拉格朗日人,并介绍了较低维度的相关计数。可以按照相同的方法写下较低维度的Gluon S矩阵的本地Lagrangians。我们还根据我们的基础结构来表达Yang-Mills的四个Gluon S-Matrix,并通过Gluon交换。

In this paper, we classify four-point local gluon S-matrices in arbitrary dimensions. This is along the same lines as \cite{Chowdhury:2019kaq} where four-point local photon S-matrices and graviton S-matrices were classified. We do the classification explicitly for gauge groups $SO(N)$ and $SU(N)$ for all $N$ but our method is easily generalizable to other Lie groups. The construction involves combining not-necessarily-permutation-symmetric four-point S-matrices of photons and those of adjoint scalars into permutation symmetric four-point gluon S-matrix. We explicitly list both the components of the construction, i.e permutation symmetric as well as non-symmetric four point S-matrices, for both the photons as well as the adjoint scalars for arbitrary dimensions and for gauge groups $SO(N)$ and $SU(N)$ for all $N$. In this paper, we explicitly list the local Lagrangians that generate the local gluon S-matrices for $D\geq 9$ and present the relevant counting for lower dimensions. Local Lagrangians for gluon S-matrices in lower dimensions can be written down following the same method. We also express the Yang-Mills four gluon S-matrix with gluon exchange in terms of our basis structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源