论文标题
资源度量及其应用的最佳扩展
Optimal Extensions of Resource Measures and their Applications
论文作者
论文摘要
我们开发一个将资源度量从一个域扩展到较大域的框架。我们发现,资源度量的所有扩展都均在我们称为最小和最大扩展的两个数量之间界定。我们讨论框架的各种应用。我们表明,任何相对熵(即满足数据处理不平等的量子状态的加性函数)都必须由最小和最大相对熵界定。我们证明,广义的痕量距离,广义保真度和纯化的距离是最佳的扩展。在纠缠理论中,我们引入了一种新技术,将纯净的纠缠措施扩展到混合的两分国家。
We develop a framework to extend resource measures from one domain to a larger one. We find that all extensions of resource measures are bounded between two quantities that we call the minimal and maximal extensions. We discuss various applications of our framework. We show that any relative entropy (i.e. an additive function on pairs of quantum states that satisfies the data processing inequality) must be bounded by the min and max relative entropies. We prove that the generalized trace distance, the generalized fidelity, and the purified distance are optimal extensions. And in entanglement theory we introduce a new technique to extend pure state entanglement measures to mixed bipartite states.