论文标题

恒定空间,恒定随机验证符,任意误差很小

Constant-Space, Constant-Randomness Verifiers with Arbitrarily Small Error

论文作者

Gezer, M. Utkan, Say, A. C. Cem

论文摘要

我们研究了概率有限状态机器的功能,这些机器是输入字符串的语言成员资格证书的验证者,在验证者仅限于验证器中,无论输入尺寸如何Say andYakaryılmaz表明,这些机器可以在错误限制内验证的一类语言,严格少于$ 1/2 $,但它们的构造构造的构造验证符具有错误的范围,而错误的界限非常接近$ 1/2 $,而在该类别的大多数语言中,当该课程中的大多数语言中的大多数语言都可以将“错误的定义”加剧,而无需给出“错误”的定义,而无需给出响应。我们表征了NL的子集,这些验证是由这些极弱的机器可以任意低误差的验证。事实证明,对于任何$ \ varepsilon> 0 $,可以在错误$ \ varepsilon $中构建常数,恒定空间验证器,用于每种可通过线性时间多头无稳定的有限自动机识别的语言(2NFA($ k $))。我们讨论为什么很难将此方法概括到所有NL,并提供一种相当紧张的方法来将线性时间2NFA($ k $)的功能与同时定义的Turing Machines定义的时空复杂性类别相关联。

We study the capabilities of probabilistic finite-state machines that act as verifiers for certificates of language membership for input strings, in the regime where the verifiers are restricted to toss some fixed nonzero number of coins regardless of the input size. Say and Yakaryılmaz showed that the class of languages that could be verified by these machines within an error bound strictly less than $1/2$ is precisely NL, but their construction yields verifiers with error bounds that are very close to $1/2$ for most languages in that class when the definition of "error" is strengthened to include looping forever without giving a response. We characterize a subset of NL for which verification with arbitrarily low error is possible by these extremely weak machines. It turns out that, for any $\varepsilon>0$, one can construct a constant-coin, constant-space verifier operating within error $\varepsilon$ for every language that is recognizable by a linear-time multi-head nondeterministic finite automaton (2nfa($k$)). We discuss why it is difficult to generalize this method to all of NL, and give a reasonably tight way to relate the power of linear-time 2nfa($k$)'s to simultaneous time-space complexity classes defined in terms of Turing machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源