论文标题
莱维步行中超级延伸的普遍性起源
Origin of universality in the onset of superdiffusion in Lévy walks
论文作者
论文摘要
当在微观量表上复杂,相关和嘈杂的运动时,就会出现超扩散,并在宏观尺度上阴谋产生特殊的动力学。它无处不在出现在各种场景中,涵盖了广泛的科学学科。最近,使用了Lévy订单$ 1 <β<2 $的Lévy步行,揭示了关键的$β_{C} = 3/2 $的通用过渡。在这里,我们研究了这种过渡的起源,并确定了两种关键成分:有限的速度,将沃克的位置与时间相结合,并在Walker在时间$ t $上完成的步行$ N $的波动中进行相应的过渡。
Superdiffusion arises when complicated, correlated and noisy motion at the microscopic scale conspires to yield peculiar dynamics at the macroscopic scale. It ubiquitously appears in a variety of scenarios, spanning a broad range of scientific disciplines. The approach of superdiffusive systems towards their long-time, asymptotic behavior was recently studied using the Lévy walk of order $1<β<2$, revealing a universal transition at the critical $β_{c}=3/2$. Here, we investigate the origin of this transition and identify two crucial ingredients: a finite velocity which couples the walker's position to time and a corresponding transition in the fluctuations of the number of walks $n$ completed by the walker at time $t$.