论文标题
脸庞:使用面部特征触发后门的面部识别系统
FaceHack: Triggering backdoored facial recognition systems using facial characteristics
论文作者
论文摘要
机器学习的最新进展(ML)为在现实世界应用中广泛使用开辟了新的途径。面部识别,特别是从社交媒体平台中的简单朋友建议使用,用于机场自动移民的生物识别验证的关键安全应用程序。考虑到这些情况,这种ML算法的安全漏洞会带来严重的威胁,并带来严重的结果。最近的工作表明,通常在面部识别系统中使用的深神经网络(DNN)容易受到后门攻击的影响。换句话说,在存在独特的触发器的情况下,DNN变成恶意。理想的触发因素遵守常见特征,因此很小,本地化,通常不是主要Im-age的一部分。因此,检测机制的重点是从统计或通过重建来检测这些不同的基于触发的异常值。在这项工作中,我们证明面部特征的特定更改也可以用于触发ML模型中的恶意行为。面部属性的变化可能使用社交媒体过滤器人为地嵌入,或使用面部肌肉中的运动自然引入。通过构造,我们的触发器很大,适应输入,并分布在整个图像上。我们评估攻击的成功并验证它不会干扰模型的性能标准。我们还通过用最先进的防御能力对触发器进行详尽的测试来证实触发器的无法检测。
Recent advances in Machine Learning (ML) have opened up new avenues for its extensive use in real-world applications. Facial recognition, specifically, is used from simple friend suggestions in social-media platforms to critical security applications for biometric validation in automated immigration at airports. Considering these scenarios, security vulnerabilities to such ML algorithms pose serious threats with severe outcomes. Recent work demonstrated that Deep Neural Networks (DNNs), typically used in facial recognition systems, are susceptible to backdoor attacks; in other words,the DNNs turn malicious in the presence of a unique trigger. Adhering to common characteristics for being unnoticeable, an ideal trigger is small, localized, and typically not a part of the main im-age. Therefore, detection mechanisms have focused on detecting these distinct trigger-based outliers statistically or through their reconstruction. In this work, we demonstrate that specific changes to facial characteristics may also be used to trigger malicious behavior in an ML model. The changes in the facial attributes maybe embedded artificially using social-media filters or introduced naturally using movements in facial muscles. By construction, our triggers are large, adaptive to the input, and spread over the entire image. We evaluate the success of the attack and validate that it does not interfere with the performance criteria of the model. We also substantiate the undetectability of our triggers by exhaustively testing them with state-of-the-art defenses.