论文标题

基于3D运动表示和空间监督的伪LIDAR点云插值

Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision

论文作者

Liu, Haojie, Liao, Kang, Lin, Chunyu, Zhao, Yao, Guo, Yulan

论文摘要

伪LIDAR点云插值是自主驾驶领域的一项新颖而充满挑战的任务,该任务旨在解决相机和LIDAR之间的频率不匹配问题。先前的作品代表了由粗2D光流引起的3D空间运动关系,插值点云的质量仅取决于深度图的监督。结果,生成的点云遭受着劣等的全球分布和本地外观。为了解决上述问题,我们提出了一个伪点点云插值网络,以生成时间和空间高质量的点云序列。通过利用点云之间的场景流,提出的网络能够学习3D空间运动关系的更准确表示。为了对点云的分布更全面地感知,我们设计了一种新颖的重建损失函数,该函数实现了倒角距离,以监督3D空间中伪LIDAR点云的产生。此外,我们引入了一个多模式深度聚合模块,以促进纹理和深度特征的有效融合。随着改善运动表示,训练损失函数和模型结构的好处,我们的方法在伪驱动点云插值任务上取得了重大改进。在KITTI数据集上评估的实验结果证明了拟议网络的最先进性能。

Pseudo-LiDAR point cloud interpolation is a novel and challenging task in the field of autonomous driving, which aims to address the frequency mismatching problem between camera and LiDAR. Previous works represent the 3D spatial motion relationship induced by a coarse 2D optical flow, and the quality of interpolated point clouds only depends on the supervision of depth maps. As a result, the generated point clouds suffer from inferior global distributions and local appearances. To solve the above problems, we propose a Pseudo-LiDAR point cloud interpolation network to generates temporally and spatially high-quality point cloud sequences. By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship. For the more comprehensive perception of the distribution of point cloud, we design a novel reconstruction loss function that implements the chamfer distance to supervise the generation of Pseudo-LiDAR point clouds in 3D space. In addition, we introduce a multi-modal deep aggregation module to facilitate the efficient fusion of texture and depth features. As the benefits of the improved motion representation, training loss function, and model structure, our approach gains significant improvements on the Pseudo-LiDAR point cloud interpolation task. The experimental results evaluated on KITTI dataset demonstrate the state-of-the-art performance of the proposed network, quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源