论文标题

任何基于草图的图像检索的语义绑定的配对周期一致性

Semantically Tied Paired Cycle Consistency for Any-Shot Sketch-based Image Retrieval

论文作者

Dutta, Anjan, Akata, Zeynep

论文摘要

基于低声素描的图像检索是计算机视觉中的一项新任务,可以检索与训练阶段很少见的手绘草图查询相关的自然图像。相关的先前工作要么需要对齐的草图图像对,要获得昂贵的记忆融合层,以将视觉信息映射到语义空间。在本文中,我们介绍了任何射击,即零射击和少量绘制的基于素描的图像检索(SBIR)任务,在其中介绍了SBIR的几个射击设置。为了解决这些任务,我们为任何拍摄的SBIR提出了一个语义对齐的配对周期符合生成对抗网络(SEM-PCYC),其中生成对抗网络的每个分支将视觉信息从草图和图像映射到通过对抗性训练的常见语义空间。这些分支中的每个分支都保持周期一致性,仅需要在类别级别上进行监督,并避免需要对齐的草图图像对。发电机输出的分类标准可确保视觉到语义空间映射是特定于类的。此外,我们建议通过自动编码器组合文本和层次侧面信息,该自动编码器在同一端到端模型中选择区分侧面信息。我们的结果表明,在具有挑战性的粗略,Tu-Berlin和QuickDraw数据集的扩展版本上,与最先进的SBIR性能相比,SBIR性能的任何镜头表现都有明显的提升。

Low-shot sketch-based image retrieval is an emerging task in computer vision, allowing to retrieve natural images relevant to hand-drawn sketch queries that are rarely seen during the training phase. Related prior works either require aligned sketch-image pairs that are costly to obtain or inefficient memory fusion layer for mapping the visual information to a semantic space. In this paper, we address any-shot, i.e. zero-shot and few-shot, sketch-based image retrieval (SBIR) tasks, where we introduce the few-shot setting for SBIR. For solving these tasks, we propose a semantically aligned paired cycle-consistent generative adversarial network (SEM-PCYC) for any-shot SBIR, where each branch of the generative adversarial network maps the visual information from sketch and image to a common semantic space via adversarial training. Each of these branches maintains cycle consistency that only requires supervision at the category level, and avoids the need of aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be class-specific. Furthermore, we propose to combine textual and hierarchical side information via an auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in any-shot SBIR performance over the state-of-the-art on the extended version of the challenging Sketchy, TU-Berlin and QuickDraw datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源