论文标题
利用机器学习来减轻哈伯德模型标志问题
Leveraging Machine Learning to Alleviate Hubbard Model Sign Problems
论文作者
论文摘要
在非两部分晶格上相互作用系统的晶格蒙特卡洛计算表现出一个振荡性假想相,即相或符号问题,即使在零化学势下也是如此。减轻符号问题的一种方法是通过分析通过全体形态流动方程来分析状态变量进入复杂平面。对于渐近流量时,状态变量接近被假想相的恒定阶段,称为lefschetz Thimbles。但是,流动此类变量并计算随后的Jacobian是一个计算要求的过程。在本文中,我们证明可以训练神经网络,以将适合此类的标志问题的合适流形化,并大大降低计算成本。我们将我们的方法应用于三角形和四面体上的哈伯德模型,这两个模型都是非双分化的。在强烈的相互作用强度和适度的温度下,四面体遭受了严重的符号问题,而标准的重新加权技术无法克服,而它很快就会屈服于我们的方法。我们通过确切的计算基准测试结果,并评论这项工作的未来方向。
Lattice Monte Carlo calculations of interacting systems on non-bipartite lattices exhibit an oscillatory imaginary phase known as the phase or sign problem, even at zero chemical potential. One method to alleviate the sign problem is to analytically continue the integration region of the state variables into the complex plane via holomorphic flow equations. For asymptotically large flow times the state variables approach manifolds of constant imaginary phase known as Lefschetz thimbles. However, flowing such variables and calculating the ensuing Jacobian is a computationally demanding procedure. In this paper we demonstrate that neural networks can be trained to parameterize suitable manifolds for this class of sign problem and drastically reduce the computational cost. We apply our method to the Hubbard model on the triangle and tetrahedron, both of which are non-bipartite. At strong interaction strengths and modest temperatures the tetrahedron suffers from a severe sign problem that cannot be overcome with standard reweighting techniques, while it quickly yields to our method. We benchmark our results with exact calculations and comment on future directions of this work.