论文标题
Rayliegh-Benard对流中的过渡和多尺度。小型普遍性
Transitions and Multi-Scaling in Rayliegh-Benard Convection. Small-Scale Universality
论文作者
论文摘要
渐近较大的雷诺数数量流体动力湍流的特征在于速度增量和空间衍生物的矩矩量的多尺度。随着对$r_λ= r^{tr}_λ\约9.0 $的降低,异常缩放消失了,转而支持“正常”一个和接近高斯的概率密度[yakhot \&donzis,{\ bf 119},0444501(2017年)]。这种过渡及其普遍性的本质是这项工作的主题。 在这里,我们考虑无限水平板之间的贝纳德对流(prandtl number $ pr = 1 $)。结果表明,在该系统中,布尔吉亚诺和科尔莫格罗夫工艺之间的“竞争”导致了由有效的“大规模”高斯随机温度场驱动的小尺度速度波动。因此,速度衍生物的间歇性动力学与大规模随机强迫产生的同质和各向同性湍流相似甚至相同。结果表明,低射线数量不稳定性使问题更加参与,并可能导致从高斯到温度场的指数PDF过渡。开发的{\ IT平均场理论}产生了无量纲的热通量$ nu \ propto ra^β$,$β\约15/56 \约0.27 $,接近芝加哥实验的结果。这些结果表明,湍流的不寻常的小规模普遍性。还表明,在$r_λ\ leq 9.0 $时,流动“记住”其层流背景,因此不能是通用的。
Asymptotically large Reynolds number hydrodynamic turbulence is characterized by multi-scaling of moments of velocity increments and spatial derivatives. With decreasing Reynolds number toward $R_λ=R^{tr}_λ\approx 9.0$, the anomalous scaling disappears in favor of the "normal" one and close-to-Gaussian probability densities [Yakhot \& Donzis, {\bf 119}, 044501 (2017)]. The nature of this transition and its universality are subjects of this work. Here we consider Benard convection ( Prandtl number $Pr=1$) between infinite horizontal plates. It is shown that in this system the "competition" between Bolgiano and Kolmogorov processes, results in small-scale velocity fluctuations driven by effective "large-scale" Gaussian random temperature field. Therefore, the intermittent dynamics of velocity derivatives are similar or even identical to that in homogeneous and isotropic turbulence generated by the large-scale random forcing. It is shown that low-Rayleigh number instabilities make the problem much more involved and may lead to transition from Gaussian to exponential PDF of the temperature field. The developed {\it mean-field theory} yielded dimensionless heat flux $Nu\propto Ra^β$ with $β\approx 15/56\approx 0.27$, close to the outcome of Chicago experiment. These results point to an unusual small-scale universality of turbulent flows. It is also shown that at $R_λ\leq 9.0$, a flow "remembers" its laminar background and, therefore, cannot be universal.