论文标题
与节点接近层次表示的图形合并学习
Graph Pooling with Node Proximity for Hierarchical Representation Learning
论文作者
论文摘要
图形神经网络吸引了广泛的关注,以在最近的作品中表现出图形数据的表示。在与图形卷积运算符的补充中,图对图数据的分层表示至关重要。但是,最近的图形合并方法仍然无法有效利用图形数据的几何形状。在本文中,我们提出了一种新型的图表合并策略,该策略利用节点接近度以使用其多跳拓扑来改善图形数据的层次表示。通过协调拓扑信息和节点特征的内核表示来获得节点接近度。拓扑信息的隐式结构 - 感知的内核表示可以有效地图池,而无需明确的图形laplacian。使用高斯RBF函数的仿射转换和内核技巧的组合对节点信号的相似性进行自适应评估。实验结果表明,所提出的图形池策略能够在公共图分类基准数据集的集合中实现最先进的性能。
Graph neural networks have attracted wide attentions to enable representation learning of graph data in recent works. In complement to graph convolution operators, graph pooling is crucial for extracting hierarchical representation of graph data. However, most recent graph pooling methods still fail to efficiently exploit the geometry of graph data. In this paper, we propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology. Node proximity is obtained by harmonizing the kernel representation of topology information and node features. Implicit structure-aware kernel representation of topology information allows efficient graph pooling without explicit eigendecomposition of the graph Laplacian. Similarities of node signals are adaptively evaluated with the combination of the affine transformation and kernel trick using the Gaussian RBF function. Experimental results demonstrate that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.