论文标题
通过快速无线电爆发来限制HEII电离检测不确定性
Constraining HeII Reionization Detection Uncertainties via Fast Radio Bursts
论文作者
论文摘要
语境。快速无线电爆发的检测率提高(FRB)使得在不久的将来可能会获取尺寸$ \ MATHCAL {O}(10^2)$ to $ \ MATHCAL {O}(10^3)$的样本。由于它们的外层外,可以帮助我们理解氦气回离时代。 目标。我们试图通过对早期FRB的观察到$ z = 3 $至$ 4 $的观察来确定氦II时期(HEII)的电源。 方法。我们按照HEII电离模型,大规模结构的密度波动,宿主星系星际介质以及FRB贡献的局部环境建立了FRB色散度量模型。该模型适合理想的层间培养基(IGM)色散度量模型,以检查通过FRB测量统计量来限制HEII电源的好处。 结论。我们在两类下报告了我们的发现,即通过FRB检测HEII回报的准确性,假设红移测量中没有不确定性,并且假设RedShift测量FRB的不确定性不同。我们表明,在第一种情况下,检测$ n \ sim \ Mathcal {o}(10^2)$ frbs给出了$σ(z__ {r,fit})\ sim0.5 $的不确定性,从拟合模型中,并且检测$ n \ sim \ sim \ sim \ mathcal {o}(10^3)$ $ fit})\ sim0.1 $。在假设$ 5-20 \%$的红移不确定性时,更改$σ(z_ {r,fit})\ sim0.5 $ to $ n \ sim \ sim 100 $和$σ(z__ {r,fit})\ sim0.1 $ for $ n \ $ n \ n \ n \ sim 1000 $ ces 1000 $ cays $ n \ sim \ sim 100 $和$σ(z__ {r,fit})\ sim0.1 $ 0.15 $。
Context. The increased detection rate of Fast Radio Bursts (FRBs) makes it likely to get samples of sizes $\mathcal{O}(10^2)$ to $\mathcal{O}(10^3)$ in the near future. Because of their extragalactic origin can help us in understanding the epoch of helium reionization. Aims. We try to identify the epoch of Helium II (HeII) reionization, via the observations of early FRBs in range of $z=3$ to $4$. Methods. We build a model of FRB Dispersion Measure following the HeII reionization model, density fluctuation in large scale structure, host galaxy interstellar medium and local environment of FRB contribution. The model is fit to the ideal intergalactic medium (IGM) dispersion measure model to check the goodness of constraining the HeII reionization via FRB measurement statistics. Conclusion. We report our findings under two categories, accuracy in detection of HeII reionization via FRBs assuming no uncertainty in the redshift measurement and alternatively assuming a varied level of uncertainty in redshift measurement of the FRBs. We show that under the first case, a detection of $N\sim\mathcal{O} (10^2)$ FRBs give an uncertainty of $σ(z_{r, fit})\sim0.5$ from the fit model, and a detection of $N\sim\mathcal{O} (10^3)$ gives an uncertainty of $σ(z_{r, fit})\sim0.1$. While assuming a redshift uncertainty of level $5-20\%$, changes the $σ(z_{r, fit})\sim0.5$ to $0.6$ for $N\sim 100$ and $σ(z_{r, fit})\sim0.1$ to $0.15$ for $N \sim 1000$ case.