论文标题

基于分类的互动遗憾最小化

Sorting-based Interactive Regret Minimization

论文作者

Zheng, Jiping, Chen, Chen

论文摘要

作为数据库系统中多标准决策的重要工具,遗憾的最小化查询被证明具有TOP-K和Skyline查询的优点:它控制输出大小,而不需要用户来提供任何偏好。现有研究证明,当互动可用时,遗憾比率可能会大大降低。在本文中,我们研究了如何通过分类机制来增强当前的互动遗憾最小化查询。用户没有从每个交互回合的显示点中选择最喜欢的点,而是对显示的数据点进行排序,然后将结果发送到系统。通过引入分类机制,对于每一轮相互作用,所探索的公用事业空间将在某种程度上缩小。此外,以下相互作用的候选点选择将缩小到较小的数据空间,从而减少交互作用的数量。我们提出了两种有效的基于分类的算法,即分类 - 简单和分类随机,以分别基于单纯形方法和随机选择策略找到最大效用点。关于合成和真实数据集的实验可以验证我们的排序简单和分类随机算法的表现优于ART最新当前的算法。

As an important tool for multi-criteria decision making in database systems, the regret minimization query is shown to have the merits of top-k and skyline queries: it controls the output size while does not need users to provide any preferences. Existing researches verify that the regret ratio can be much decreased when interaction is available. In this paper, we study how to enhance current interactive regret minimization query by sorting mechanism. Instead of selecting the most favorite point from the displayed points for each interaction round, users sort the displayed data points and send the results to the system. By introducing sorting mechanism, for each round of interaction the utility space explored will be shrunk to some extent. Further the candidate points selection for following rounds of interaction will be narrowed to smaller data spaces thus the number of interaction rounds will be reduced. We propose two effective sorting-based algorithms namely Sorting-Simplex and Sorting-Random to find the maximum utility point based on Simplex method and randomly selection strategy respectively. Experiments on synthetic and real datasets verify our Sorting-Simplex and Sorting-Random algorithms outperform current state-of-art ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源