论文标题
贝叶斯优化,缺少输入
Bayesian Optimization with Missing Inputs
论文作者
论文摘要
贝叶斯优化(BO)是一种优化昂贵的黑盒功能的有效方法。在现实世界中,BO通常面临输入中缺失值的主要问题。丢失的输入可能在两种情况下发生。首先,培训的历史数据通常包含缺失值。其次,当执行函数评估(例如,在热处理过程中计算合金强度)时,可能会发生错误(例如,恒温器停止工作),导致错误的情况,在这种情况下,以随机的未知值而不是建议的值计算该函数。为了解决这个问题,一种常见的方法只需跳过发生缺失值的数据点即可。显然,这种天真的方法不能有效利用数据,并且通常导致性能差。在本文中,我们提出了一种新颖的BO方法来处理丢失的输入。我们首先找到每个缺失值的概率分布,因此我们可以通过从其分布中绘制样本来将缺失的值归为缺失值。然后,我们基于众所周知的上置信度结合(UCB)的采集函数开发新的采集函数,该功能在提出函数评估的下一个点时考虑了估算值的不确定性。我们对合成和现实世界应用进行了全面的实验,以显示我们方法的有用性。
Bayesian optimization (BO) is an efficient method for optimizing expensive black-box functions. In real-world applications, BO often faces a major problem of missing values in inputs. The missing inputs can happen in two cases. First, the historical data for training BO often contain missing values. Second, when performing the function evaluation (e.g. computing alloy strength in a heat treatment process), errors may occur (e.g. a thermostat stops working) leading to an erroneous situation where the function is computed at a random unknown value instead of the suggested value. To deal with this problem, a common approach just simply skips data points where missing values happen. Clearly, this naive method cannot utilize data efficiently and often leads to poor performance. In this paper, we propose a novel BO method to handle missing inputs. We first find a probability distribution of each missing value so that we can impute the missing value by drawing a sample from its distribution. We then develop a new acquisition function based on the well-known Upper Confidence Bound (UCB) acquisition function, which considers the uncertainty of imputed values when suggesting the next point for function evaluation. We conduct comprehensive experiments on both synthetic and real-world applications to show the usefulness of our method.