论文标题
通过分布和特征的层次结构了解深层可逆网络的异常检测
Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features
论文作者
论文摘要
像CIFAR10这样的自然图像数据集上通过最大似然训练的深生成网络通常将高似然分配给具有不同对象的数据集的图像(例如SVHN)。我们在对可逆生成网络的异常检测中进行了对这种故障的先前研究,并将其清楚地解释为模型偏差和领域的结合:卷积网络在任何自然图像数据集上接受培训时学习相似的低级特征分布,并且这些低水平的特征占据了可能的可能性。因此,当嵌入式和离群值之间的歧视性特征处于高级,例如对象形状时,异常检测变得特别具有挑战性。为了消除模型偏差和域对检测高级差异的负面影响,我们首先提出两种方法,首先使用两个相同模型的对数似然比,一个对分布数据进行培训(例如CIFAR10)(例如CIFAR10),另一种是在图像的更一般的图像(例如80亿Tiny Tiny Imagess)上进行的。我们还为从更通用的分布中的样本中获得了分布网络的新型异常损失,以进一步提高性能。其次,使用诸如Glow之类的多尺度模型,我们表明低级特征主要在早期尺度上捕获。因此,仅使用最终量表的可能性贡献在检测分布外和分布的高级特征差异方面表现出色。如果一个人无法访问合适的一般分布,此方法特别有用。总体而言,我们的方法在无监督的环境中实现了强大的异常检测性能,并且在监督环境中仅略有表现不佳的基于分类器的方法。代码可以在https://github.com/boschresearch/hierarchical_anomaly_detection上找到。
Deep generative networks trained via maximum likelihood on a natural image dataset like CIFAR10 often assign high likelihoods to images from datasets with different objects (e.g., SVHN). We refine previous investigations of this failure at anomaly detection for invertible generative networks and provide a clear explanation of it as a combination of model bias and domain prior: Convolutional networks learn similar low-level feature distributions when trained on any natural image dataset and these low-level features dominate the likelihood. Hence, when the discriminative features between inliers and outliers are on a high-level, e.g., object shapes, anomaly detection becomes particularly challenging. To remove the negative impact of model bias and domain prior on detecting high-level differences, we propose two methods, first, using the log likelihood ratios of two identical models, one trained on the in-distribution data (e.g., CIFAR10) and the other one on a more general distribution of images (e.g., 80 Million Tiny Images). We also derive a novel outlier loss for the in-distribution network on samples from the more general distribution to further improve the performance. Secondly, using a multi-scale model like Glow, we show that low-level features are mainly captured at early scales. Therefore, using only the likelihood contribution of the final scale performs remarkably well for detecting high-level feature differences of the out-of-distribution and the in-distribution. This method is especially useful if one does not have access to a suitable general distribution. Overall, our methods achieve strong anomaly detection performance in the unsupervised setting, and only slightly underperform state-of-the-art classifier-based methods in the supervised setting. Code can be found at https://github.com/boschresearch/hierarchical_anomaly_detection.