论文标题

一种基于命名行为建模的多视图方法,用于使中国用户帐户在多个网络中对齐

A Multi-View Approach Based on Naming Behavioral Modeling for Aligning Chinese User Accounts across Multiple Networks

论文作者

Zhu, Junxing, Wang, Xiang, Liu, Qiang, Li, Xiaoyong, Shao, Chengcheng, Zhou, Bin

论文摘要

近年来,数亿人已成为社交网络用户,并且在多个社交网络中对中​​国使用者的帐户保持一致,对于许多网络间应用程序,例如跨网络建议,跨网络链接链接预测。许多方法已经探索了利用帐户名称信息来对齐通用英语用户帐户的正确方法。但是,在对齐中国用户帐户时,如何正确利用帐户名称信息仍有详细研究。在本文中,我们首先讨论可用的命名行为模型以及不同类型的中文帐户名称匹配的相关功能。其次,我们提出了多视图跨网络用户对齐方式(MCUA)方法的框架,该方法使用多视图框架来创造性地集成不同的模型来处理不同类型的中文帐户名称匹配,并且可以在对齐中国用户帐户时考虑所有研究的功能。最后,我们进行实验,以证明MCUA可以在Sina Weibo和Twitter之间对齐中国用户帐户的许多现有方法。此外,我们还研究了MCUA的最佳学习模型和在我们的实验数据集中的不同类型的名称匹配的宝贵特征。

Hundreds of millions of Chinese people have become social network users in recent years, and aligning the accounts of common Chinese users across multiple social networks is valuable to many inter-network applications, e.g., cross-network recommendation, cross-network link prediction. Many methods have explored the proper ways of utilizing account name information into aligning the common English users' accounts. However, how to properly utilize the account name information when aligning the Chinese user accounts remains to be detailedly studied. In this paper, we firstly discuss the available naming behavioral models as well as the related features for different types of Chinese account name matchings. Secondly, we propose the framework of Multi-View Cross-Network User Alignment (MCUA) method, which uses a multi-view framework to creatively integrate different models to deal with different types of Chinese account name matchings, and can consider all of the studied features when aligning the Chinese user accounts. Finally, we conduct experiments to prove that MCUA can outperform many existing methods on aligning Chinese user accounts between Sina Weibo and Twitter. Besides, we also study the best learning models and the top-k valuable features of different types of name matchings for MCUA over our experimental data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源