论文标题
Berwald标量曲率的特性
Properties of Berwald scalar curvature
论文作者
论文摘要
在这篇简短的论文中,我们证明了带有berwald标量曲率消失的鳍歧管为零$ \ mathbf {e} $ - 曲率。结果,贝尔瓦尔德标量曲率消失的兰斯伯格流形的是伯瓦尔德的歧管。这改善了先前的结果\ cite {li}。对于$(α,β)$ - 尺寸的$ - 指标大于2,如果平均陆地曲率和Berwald标量曲率都消失了,则Berwald曲率也消失了。
In this short paper, we prove that a Finsler manifold with vanishing Berwald scalar curvature has zero $\mathbf{E}$-curvature. As a consequence, Landsberg manifolds with vanishing Berwald scalar curvature are Berwald manifolds. This improves a previous result in \cite{Li}. For $(α,β)$-metrics on manifold of dimension greater than 2, if the mean Landsberg curvature and the Berwald scalar curvature both vanish, the Berwald curvature also vanishes.